ultrastable ideal - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

ultrastable ideal - tradução para russo

FAMILY CLOSED UNDER SUBSETS AND COUNTABLE UNIONS
Σ-ideal; S-ideal; Sigma ideal

ultrastable ideal      

математика

ультрастабильный идеал

ideal         
WIKIMEDIA DISAMBIGUATION PAGE
Ideal (mathematics); Ideals; Ideal (disambiguation)

[ai'diəl]

общая лексика

абсолютный

дивизор

идеал

идеальный

мысленный

нереальный

несобственный

теоретический

прилагательное

общая лексика

идеальный

отличный

совершенный

превосходный

воображаемый

абстрактный

мысленный

нереальный

неосуществимый

идеальный, совершенный

воображаемый, мысленный

философия

идеалистический

синоним

perfect

существительное

[ai'diəl]

общая лексика

идеал

верх совершенства

образец

философия

идеальное

совершенное

синоним

prototype

maximal filter         
SPECIAL KIND OF LOWER SETS OF AN ORDER
Order ideal; Prime filter; Ideal (lattice theory); Partial Order Ideal; Partial order ideal; Decreasing subset; Semi-ideal; Maximal filter; Prime ideal (order theory); Order-ideal

математика

максимальный фильтр

ультрафильтр

Definição

ideal
<theory> In domain theory, a non-empty, downward closed subset which is also closed under binary least upper bounds. I.e. anything less than an element is also an element and the least upper bound of any two elements is also an element. (1997-09-26)

Wikipédia

Sigma-ideal

In mathematics, particularly measure theory, a 𝜎-ideal, or sigma ideal, of a sigma-algebra (𝜎, read "sigma," means countable in this context) is a subset with certain desirable closure properties. It is a special type of ideal. Its most frequent application is in probability theory.

Let ( X , Σ ) {\displaystyle (X,\Sigma )} be a measurable space (meaning Σ {\displaystyle \Sigma } is a 𝜎-algebra of subsets of X {\displaystyle X} ). A subset N {\displaystyle N} of Σ {\displaystyle \Sigma } is a 𝜎-ideal if the following properties are satisfied:

  1. N {\displaystyle \varnothing \in N} ;
  2. When A N {\displaystyle A\in N} and B Σ {\displaystyle B\in \Sigma } then B A {\displaystyle B\subseteq A} implies B N {\displaystyle B\in N} ;
  3. If { A n } n N N {\displaystyle \left\{A_{n}\right\}_{n\in \mathbb {N} }\subseteq N} then n N A n N . {\textstyle \bigcup _{n\in \mathbb {N} }A_{n}\in N.}

Briefly, a sigma-ideal must contain the empty set and contain subsets and countable unions of its elements. The concept of 𝜎-ideal is dual to that of a countably complete (𝜎-) filter.

If a measure μ {\displaystyle \mu } is given on ( X , Σ ) , {\displaystyle (X,\Sigma ),} the set of μ {\displaystyle \mu } -negligible sets ( S Σ {\displaystyle S\in \Sigma } such that μ ( S ) = 0 {\displaystyle \mu (S)=0} ) is a 𝜎-ideal.

The notion can be generalized to preorders ( P , , 0 ) {\displaystyle (P,\leq ,0)} with a bottom element 0 {\displaystyle 0} as follows: I {\displaystyle I} is a 𝜎-ideal of P {\displaystyle P} just when

(i') 0 I , {\displaystyle 0\in I,}

(ii') x y  and  y I {\displaystyle x\leq y{\text{ and }}y\in I} implies x I , {\displaystyle x\in I,} and

(iii') given a sequence x 1 , x 2 , I , {\displaystyle x_{1},x_{2},\ldots \in I,} there exists some y I {\displaystyle y\in I} such that x n y {\displaystyle x_{n}\leq y} for each y . {\displaystyle y.}

Thus I {\displaystyle I} contains the bottom element, is downward closed, and satisfies a countable analogue of the property of being upwards directed.

A 𝜎-ideal of a set X {\displaystyle X} is a 𝜎-ideal of the power set of X . {\displaystyle X.} That is, when no 𝜎-algebra is specified, then one simply takes the full power set of the underlying set. For example, the meager subsets of a topological space are those in the 𝜎-ideal generated by the collection of closed subsets with empty interior.

Como se diz ultrastable ideal em Russo? Tradução de &#39ultrastable ideal&#39 em Russo